超导是一种物理现象,指某些材料在低温下电阻突然消失,呈现出零电阻和完全抗磁性的特征。超导最早是在年由荷兰科学家昂内斯发现的,当时他将汞冷却到4.2K时,发现其电阻降为零。后来人们又陆续发现了许多其他的超导材料,如铅、锡、铌等。
超导有两个重要的特点:零电阻和完全抗磁性。零电阻意味着超导体可以无损耗地传输大电流,并在周围产生强大的磁场。完全抗磁性意味着超导体可以排斥外部磁场,并保持内部磁通量不变。这两个特点使得超导体在许多领域有着广泛的应用前景,如核磁共振成像、高能物理实验、核聚变装置、储能系统、电力输送等。
那么,为什么某些材料在低温下会变成超导体呢?这背后有什么物理机制呢?
常规超导原理
常规超导体是指那些在低温下,通过电子-声子相互作用而产生超导电性的材料,如金属和合金等。常规超导体的理论基础是BCS理论,该理论由巴丁、库珀和施里弗三人于年提出。
BCS理论认为,在常规超导体中,低温下两个原本均带负电、互相排斥的电子,通过影响原子晶格产生的振动(这一振动的能量量子称为声子)而建立间接吸引作用,从而两两配对构成“库伯对”。在量子相干效应下,这些“库伯对”可以在晶格中无损耗地运动,形成了整体的超导电性。
BCS理论还给出了计算常规超导体临界温度、临界磁场、能隙等物理量的方法,并与实验结果符合得很好。BCS理论为解释和发展常规超导现象作出了重大贡献,并使其三位创始人获得了年诺贝尔物理学奖。
高温超导原理
高温超导体是指那些在超过77K(液氮温度)的温度下,仍然表现出超导电性的材料,如铜氧化物和铁基化合物等。高温超导体的发现打破了BCS理论预言的常规超导体的临界温度上限,引起了物理学界的巨大震动和广泛